lunes, 26 de febrero de 2018

La galaxia de Andrómeda

Junto con la nuestra, es una de las galaxias dominantes en tamaño y masa

La galaxia de Andrómeda es una galaxia espiral en muchos aspectos similar a nuestra galaxia, la Vía Láctea. Pero esta galaxia es mucho más que eso. Mucho más que nuestra galaxia más cercana. 
Conocida en círculos astronómicos más habitualmente como Messier 31 (M31), es unos de nuestros vecinos cósmicos más cercanos e importantes, a tan solo unos 2,5 millones de años luz. 

Junto con la nuestra, es una de las galaxias dominantes en tamaño y masa del llamado «Grupo Local», en la que destaca también la galaxia del Triángulo, Messier 33, -aconsejo mi entrada sobre M33 [1] si quieres saber un poco más sobre esta-.  La  cercanía y el tamaño de M31 permiten que sea un objeto capaz de ser fotografiado con una resolución asombrosa desde la Tierra [2].

No es la primera vez que escribo sobre ella, de hecho con motivo de la captura de una mis fotografías relativamente recientes (noviembre, 2015) al telescopio desde La Pobla Tornesa, me extendí en sus características principales [3], en enero de 2016.



Andrómeda es posiblemente más grande y masiva (y con ello, con más estrellas) que nuestra galaxia, se estima que aproximadamente tiene un diámetro superior a los 200 000 años luz y unos 150 000 millones de estrellas.

Recuperando información de la entrada de mi blog, citada con anterioridad, recordamos que los conocimientos de la galaxia de Andrómeda se han ido incrementando en precisión en las últimas décadas gracias a la astronomía multiespectro, y que sigue aportándonos sorpresas, como lo fueron las variaciones en la determinación de su masa (y número de componentes estelares), así recordamos los descubrimientos relativamente recientes (en década pasada) gracias al telescopio espacial GALEX (GALaxy Evolution eXplorer, 2003-2013)  sobre la dinámica y formación galáctica a partir de datos obtenidos en  el  espectro ultravioleta [4], que aportaron también algo más de luz sobre objetos extraños, como las estrellas subenanas calientes azules (Sdb).

Observaciones en la zona del infrarrojo del espectro con telescopios espaciales como HST (1990-actualidad) y Spitzer (2003-2009 y 2000-actualidad, en la Spitzer Warm Mission), también han aportado datos importantes sobre las zonas ricas en polvo interestelar, hidrógeno molecular y formación estelar (zonas HII), así como observaciones en las zonas próximas al núcleo galáctico.

A partir de estudios sobre la distribución de regiones HII (regiones de formación estelar), cúmulos globulares, y otros objetos identificables [5] en la galaxia, ha sido posible establecer hipótesis sobre la formación y dinámica estelar de la galaxia. Así, la elevada presencia de cúmulos globulares (más de 450), en su halo galáctico, duplicando los conocidos en la nuestra, han indicado la posible captura de componentes más pequeños del grupo local por parte de M31 a lo largo de su formación e historia.

Fotometría con el Isaac Newton Telescope (La Palma) de 2,5 metros y espectroscopia con el Gemini-Nord Telescope (Hawai) de 8 metros, de estrellas binarias eclipsantes (EBs) de las que se conocen actualmente más de 150 sistemas, han permitido establecer la distancia a la galaxia con una alta precisión [6], en unos estudios que se han depurado en más de una década, con el español Ignasi Ribas (IECC-CSIC) como Investigador Principal de los mismos.

Respecto al cálculo de la masa total de la galaxia, y en base a estudios de la última década, se cita una masa total (incluyendo materia oscura) de 1,4 x 1012 masas solares [7] en base a estudios cinemáticos de los cúmulos globulares y pequeñas galaxias satélites de la misma que se cuentan hasta en un número mayor de veinte. Sin embargo,  en cuanto al dato sobre el número de estrellas, podemos afirmar  que se encuentra en revisión, entre otros motivos por las observaciones en el ultravioleta que se han citado anteriormente y por las de Spitzer, de las que que algunos autores calculan que es posible deducir un millón de millones de estrellas, lejos de los 150 000 millones que se suelen citar.

La constelación de Andrómeda.
Ilustración de la obra
«Tratado de las estrellas fijas»  atribuido al Sûfi (Irán, 1090).
Crédito: Yale University Press

Como podemos ver, a pesar de ser una de las galaxias más cercanas y por tanto brillantes -es posible localizarla a simple vista en una noche oscura y existen referencias de su detección antes del año 1000 de nuestra era [8]- su observación cada vez más detallada gracias a los avances de las técnicas de la astrofísica moderna, han puesto al descubierto nuestra incertidumbre sobre algunos parámetros básicos de su caracterización galáctica, en parte debida a su orientación hacía nosotros.

Recordemos que la determinación de su distancia ha sido uno de los grandes hitos de la astronomía moderna del pasado siglo XX. Nos encontramos ante uno de los objetos que han marcado la cosmología moderna, pues a partir de la primera estimación de su distancia por E. Hubble, empezamos a conocer la verdadera estructura y dimensiones del universo.

El estudio de estrellas novas por parte de H. Curtis a partir de 1917, motivó el llamado «Gran Debate» sobre las distancias y naturalezas de las llamadas entonces «nebulosas espirales». Curtis había llegado a la conclusión por la comparativa de la luminosidades del estudio de novas en la galaxia, que M31 debía estar a unos 500 000 años luz de distancia de nuestra Vía Láctea, y que constituía por sí misma un «universo isla» como nuestra galaxia, en un universo donde existían muchas más.

Algunos estudios previos, utilizando otros métodos ya habían devuelto resultados significativos en cuanto a sus distancias, como el de E. Opik en 1922 [9]. Pero el estudio de las estrellas variables cefeidas (H. Leavitt, 1912) para medir distancias, fue el método utilizado adecuado para calcular la distancia a la galaxia de Andrómeda utilizado por E. Hubble (Mount Wilson, 1924) con tesón y fortuna. Entre 1922 y 1923 buscó estrellas cefeidas en M31 y galaxias cercanas, y su cálculo en la distancia a M31 -estimado una distancia no inferior a 800 000 años luz- desencadenó una verdadera revolución en la visión del universo [10]. Este dato, junto con la posible naturaleza mayormente estelar del objeto, ya conocida desde la obtención de los primeros espectros de M31 (W. Huggins, 1864) [11], parecían pruebas irrefutables para cerrar el mencionado «gran debate», por parte de Hubble, cuyos resultados publicó el 1 de enero de 1925 en el encuentro de la American Astronomical Society, si  bien ya se había permitido la publicación el 23 de noviembre de 1924 en The New York Times de sus resultados preliminares.

La estrella variable Cefeida V1 M31
marcada (var!) en la placa original por E. Hubble.
 Esta estrella cambió la cosmología moderna.
Fuente: AAVSO
En 1929, Hubble volvería nuevamente a la primera línea de los descubrimientos al demostrar la expansión del universo y su ley de recesión de las galaxias.

El estudio de la distancia a la galaxia de Andrómeda había abierto un universo insospechado y desconocido que nos sigue dando sorpresas. Para concluir esta larga entrada, mencionar el reciente estudio sobre los movimientos de las estrellas de la parte del halo, que parecen inducir en simulaciones numéricas que la galaxia es en realidad el resultado reciente de la interacción de dos galaxias hace solamente entre 2000 y 3000 millones de años, según investigadores franceses (Observatorio de Paris) liderados por F. Hammer et Al. [12]. Esta simulación, que ha requerido de importante potencia de cálculo, confirma lo que observaciones precedentes en las últimas décadas ya habían empezado a poner de manifiesto aunque no con la citada rotundidad del poder de la simulación, como la presencia de dos cuerpos compactos en el núcleo galáctico, la extensión del disco de la galaxia, o la posible interacción con otras galaxias en el pasado, pero de mucha menor envergadura [13].

Uno de nuestros vecinos galácticos más cercanos, nos sigue deparando muchas sorpresas, acertijos necesarios para comprender más sobre la formación y la evolución de las galaxias, los verdaderos ladrillos que conforman nuestro universo observable. La cosmología es sin duda la mayor lección de humildad para el intelecto humano.

19 comentarios:

  1. ’ll be coming back to your website for more soon.

    ResponderEliminar

  2. This is incredible, I feel really happy to have seen your webpage.

    ResponderEliminar


  3. i am actually lo a issue new nowadays! Thank you for that. Thank u for sharing, i really like it

    ResponderEliminar
  4. Really appreciate this wonderful post that you have here.

    ResponderEliminar
  5. I want to read more things about here! thanks for the info.

    ResponderEliminar

  6. Silicon carbide and aluminium oxide are the major impregnating abrasive particles of sandpaper. sandpaper grit

    ResponderEliminar
  7. I want to see new information on this site.. This is awesome

    ResponderEliminar
  8. Seen articles on these topics a few times, but yours is the great.

    ResponderEliminar
  9. I am actually happy to read this website posts, thanks for providing one.

    ResponderEliminar
  10. Thanks for taking the time to post such valuable info.

    ResponderEliminar
  11. I wanted to thank you for this excellent read!! I definitely loved it

    ResponderEliminar
  12. A very excellent blog post. I am thankful for your blog post.

    ResponderEliminar
  13. Thanks for giving this excellent information! Wonderful article.

    ResponderEliminar
  14. I'd like to draft like this too - taking time and real hard work to make a great article.

    ResponderEliminar
  15. I appreciate your work for creating this blog and I hope these site help me for

    ResponderEliminar

Google+